

CEPC-SppC General Status and Perspectives

-Towards construction through EDR Phase

Jie Gao

IHEP

- Introduction (General and physics goals)
- CEPC accelerator design and key technologies R&D in TDR
- SppC compatibility with CEPC
- CEPC site preparations in TDR
- CEPC accelerator TDR review (+cost), IAC meeting and TDR released
- CEPC Detector R&D status
- CEPC EDR goals, plans and development towards construction
- CEPC industrial preparation and international collaborations
- Summary

Physics Goals of CEPC-SppC

- Circular Electron-Positron Collider (CEPC) as a Higgs Factory (91, 160, 240, 360 GeV)
 - Higgs Factory (>10^6 Higgs) :
 - Precision study of Higgs(mH, JPC, couplings), **complementary** to Linear colliders
 - Looking for hints of new physics, Dark Matter...
 - Z & W factory (>10^10 Z0) :
 - precision test of SM
 - Rare decays ?
 - Flavor factory: b, c, t and QCD studies
- Super proton-proton Collider(SppC) (~100 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h3 & h4 couplings

Precision measurement + Searches for new physics: complementary with each other (lepton and hadron colliders)

CEPC-SppC was proposed by Chinese scientists in Sept. 2012 after <u>Higgs Boson</u> was discovered on <u>July 4, 2012</u> at CERN

Started from **2012**, Human being entered into the **era of Higgs**. **A new calendar of Science-**<u>**Anno Higg**</u> is proposed by J. Gao, i.e. **2012AD=0AH**. Year **2024AD** is also**12AH**

Cross sections for major SM physics processes at the electron positron collider

Anticipated accuracy on Higgs properties at CEPC and at LHC/HL-LHG

CEPC-SppCGeneral Status-J. Gao

Scientific Objectives: "Discovery + Precision Measurement"

Higgs coupling measurement can be improved by orders magnititude

Direct and indirect probe to new physics up to 10 TeV, an order of magntitude higher than HL-LHC Electroweak measurement can be improved by a large factor

Chinese Physica C 514, 43, 564 4 (2019) 043002

Fridmin Ant (安杉方)¹⁰¹ Yui Bari (1181)² Chambai Changli (2007)¹¹ Xin Chemilik Bri ² Zhoming Chamblik Fri³ Jans Chrimenics du Costa¹ Zhoronei Cui (WBSR)² Yugani YangCri (2007)¹⁰³ Chengdong FolD (2007)¹⁰ Jan Chard (2007)¹⁰¹ Yugani Cherd (2007)¹⁰² Yunaming Chard (2007)¹⁰³ The Ham (4007)¹⁰³ Shanding (4007)¹⁰³ Janyin Cui (1028)¹⁰¹ Frangsi Court (1028)¹⁰³ Jan Chard (1027)¹⁰³ Tao Ham (4007)¹⁰³ Shanding (400(4007)¹⁰³ Homgins Hice (1028)¹⁰³ Yugani Hale (1027)¹⁰⁴ Xinong (400(4007)¹⁰⁵ Janong (400(4007)¹⁰⁵)¹⁰⁵

Physics white papers published and to be published

 $MET \stackrel{(bb)}{=} + \underbrace{MET}_{MET} \stackrel{(\tau\tau)}{=} + \underbrace{MET}_{MET} \stackrel{(\tau\tau)}{=} + \underbrace{MET}_{MET} \stackrel{(bf)}{=} MET \stackrel{(bb)}{=} \underbrace{(bb)}_{(bb)} \stackrel{(cc)}{(cc)} \stackrel{(cc)}{(jj)} \stackrel{(jj)}{(jj)} \stackrel{(bb)}{(bb)} \stackrel{(\tau\tau)}{(\tau\tau)} \stackrel{(\tau\tau)}{(\tau\tau)} \stackrel{(jj)}{(j\gamma)} \stackrel{(\gamma\gamma)}{(\gamma\gamma)} \stackrel{($

Key Scientific Issues and Technological Route

 $Physics \Longrightarrow Detector \Longrightarrow MDI \Longrightarrow Accelerator$

CEPC Operation Plan and Goals in TDR

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
Η*	240	10	50	8.3	2.2	21.6	$4.3 imes 10^6$
			30	5	1.3	13	$2.6 imes10^6$
Z	01	n	50	192**	50	100	4.1×10^{12}
	91	Z	30	115**	30	60	$2.5 imes 10^{12}$
W	160	1	50	26.7	6.9	6.9	$2.1 imes 10^8$
	100	1	30	16	4.2	4.2	$1.3 imes 10^8$
ttҧ	360	5	50	0.8	0.2	1.0	$0.6 imes 10^6$
			30	0.5	0.13	0.65	$0.4 imes10^6$

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

- ** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.
- *** Calculated using 3,600 hours per year for data collection.

CEPC-SppCGeneral Status-J. Gao

The Global HEP Consensus on Higgs Factories

The scientific importance and strategical value of an electron positron Higgs factory is clearly identified worldwide

2013, 2016: Xiangshan Science Conferences concluded that the CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

2017: Japan Association of High Energy Physicists (JAHEP) proposes to construct a 250 GeV center-of-mass ILC promptly as a Higgs factory.

2020: An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

Europe

In April **2022**, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals

Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023

Recommendation 6

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

 The level and nature of US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.

 Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.

3.A plan for the evolution of the Fermilab accelerator complex consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

P5 report, USA, 2023

CEPC-SppC Progresses-J. Gao

Timelines in Snowmass Energy Frontier Summary

9

S

CEPC Higgs Factory and SppC Layout in TDR

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW), high energy gamma ray 100Kev~100MeV

CEPC Accelerator System Parameters in TDR

Linac

Booster

Collider

Parameter	Symbol	Unit	Baseline			<i>tt</i>	L. Offerie	I On avia	W		Ζ		Higgs	Z	W	<i>tt</i> ҧ
						injection	injection	injection	injection	Off axis	s injection	Number of IPs	2			
Energy	E_{e}/E_{e+}	GeV	30	Circumfer.	km				100	-		Circumference (km)	100.0			
Denstition	t- t			Injection energy	GeV				30			SR power per beam (MW)	30			
rate	f_{rep}	Hz	100	Extraction	GeV	180	12	20	80	4	5.5	Energy (GeV)	120	45.5	80	180
Bunch				energy		25	2(9	2(1)7	1207	2079	50(7	Bunch number	268	11934	1297	35
number per			1 or 2	Maximum			268	201+7	1297	3978	3907	Emittance ε/ε (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7
pulse				bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81	$\frac{x y}{P} = \frac{1}{2}$ Beam size at IP $\sigma/\sigma(um/nm)$	14/36	6/35	13/42	39/113
Bunch		nC	15(3)	Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4	Deall size at 11 q/ q(ull/lill)		0/55	15/12	57/115
charge		lic	1.5 (5)	SR power	MW	0.93	0.94	1.66	0.94	0.323	0.49	Bunch length (natural/total)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9
Energy				Emittance	nm	2.83	1.2	26	0.56	0	.19	(11111)	<u> </u>			
spread	σ_{E}		1.5×10^{-3}	RF frequency	GHz				1.3			Beam-beam parameters ६∕६	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1
Spread				RF voltage	GV	9.7	2.1	17	0.87	0	.46	RF frequency (MHz)		6:	50	
Emittance	\mathcal{E}_r	nm	6.5	Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5

CEPC Technical Design Report (TDR) includes: 1) CEPC Accelerator TDR 2) CEPC Detector TDRrd (rd=reference design) will be released by June 2025

Machine Design for all Operation Modes

CEPC e- and e+ Injection Linac Designs in TDR

• Start-to-end simulations with errors have been conducted for both electron/positron beams, with qualities satisfying design requirements. May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom)

9

CEPC Plasma Injector (alternative option) and TF Plan₄

CEPC plasma injector scheme:

From 10 GeV \rightarrow 30 GeV \rightarrow **TR \geq 2**

Simulation results show that it works on paper with reasonable error tolerances for both electron and positron beams injected to the booster

PWFA/LWFA TF based on BEPC-II Linac and HPL has been founded by CAS 90M RMB in Sept. 2023

CEPC Polarization Studies (alternative option)

Both the transverse and longitudinal polarization and Z, W, are feasible (Higgs under study)

- Implement the lattice design to accommodate polarized beams: spin rotator, wiggler, Compton polarimeters, dumping ring and booster design, etc.
- R&D of Compton polarimeter, polarized electron sources, spin rotator, etc.
- Simulate the process and effects of errors
- Carry out experiments at BEPCII & HEPS booster

CEPC Key Technology R&D Status in TDR

CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec
Average usable CW E_{acc} (MV/m)	23.1	3.0×10 ¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m

CEPC-SppCGeneral Status-J. Gao

May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom)

CEPC R&D: 650 MHz SRF Cavities for collider

- First three 2-cell cavities based mainly on BCP shows reasonable performance
- Recent 1-cell cavity based on cold-EP and Mid-temperature baking achieved the world best results, exceeding CEPC spec.
- Continue to develop multi-cell cavities

Vertical test of 650 MHz 2-cell cavity

CEPC High Efficiency High Power Klystron Development and RF Power Distribution System

CEPC klystron R&D

CEPC-SppCGeneral Status-J. Gao

R&D: Other Prototypes

EM deflector

Lambertson magnets

SppC Collider Parameters in TDR

-Parameter list (updated Feb. 2022)

km

TeV

Т

m

m

m

m

TeV

kHz

μs

m

А

ns

Main parameters

Circumference	100
Beam energy	62.5
Lorentz gamma	66631
Dipole field	20.00
Dipole curvature radius	10415.4
Arc filling factor	0.780
Total dipole magnet length	65442.0
Arc length	83900
Total straight section length	16100
Energy gain factor in collider rings	19.53
Injection energy	3.20
Number of IPs	2
Revolution frequency	3.00
Revolution period	333.3
Physics performance and beam param	ieters
Initial luminosity per IP	4.3E+34
Beta function at initial collision	0.5
Circulating beam current	0.19
Nominal beam-beam tune shift limit per	0.015
Bunch separation	25
Bunch filling factor	0.756
Number of bunches	10080
Bunch population	4.0E+10
Accumulated particles per beam	4.0E+14

Lattice of SPPC

CEPC-SppCGeneral Status-J. Gao

May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom)

R&D under way

J_e of IBS expected to be similar as ReBCO in 2020s with better mechanical properties and lower cost, ready for mass applications in ultra high field magnets

HF Magnet Development

Picture of LPF1-U

Dual aperture superconducting dipoles achieve 12T@4.2 K and 14T@4.2K entirely fabricated in China. The next step is reaching 16-20T

CEPC Site Preparations (three candidates in TDR)

CEPC-SppCGeneral Status-J. Gao

May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom)

Power Consumption of CEPC @ Higgs

			Higgs 30MW								Higgs 50MW				
SN	System	Collider	Booster	Linac	BTL	IR	Surface building	Total	Collider	Booster	Linac	BTL	IR	Surface building	Total
1	RF Power Source	96.90	1.40	11.10				109.40	161.60	1.73	14.10				177.40
2	Crygenic system	9.72	1.71			0.14		11.57	9.17	1.77			0.14		11.08
3	Vacuum System	5.40	4.20	0.60				10.20	5.40	4.20	0.60				10.20
4	Magnet Power Supplies	44.50	9.80	2.50	1.10	0.30		58.20	44.50	9.80	2.50	1.10	0.30		58.20
5	Instrumentation	1.30	0.70	0.20				2.20	1.30	0.70	0.20				2.20
6	Radiation Protection	0.30		0.10				0.40	0.30		0.10				0.40
7	Control System	1.00	0.60	0.20				1.80	1.00	0.60	0.20				1.00
8	Experimental devices					4.00		4.00					4.00		4.00
9	Utilities	37.80	3.20	1.80	0.60	1.20		44.60	46.40	3.80	2.50	0.60	1.20		54.50
10	General services	7.20		0.30	0.20	0.20	12.00	19.90	7.20		0.30	0.20	0.20	12.00	19.90
	Total	204.12	21.61	16.80	1.90	5.84	12.00	262.27	276.87	22.60	20.50	1.90	5.84	12.00	339.71

Various measures will be studied and implemented towards a green collider, as discussed in the Mini workshop of accelerator, Jan. 18-19, 2024, HKUST-IAS, Hong Kong

https://indico.cern.ch/event/1335278/timetable/?view=standard

CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP CEPC Technical Design Report Accelerator

> The CEPC Study Group December 2023

HEP CEPC DR 3023 OT

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

Total	364	100%
Project management	3	0.8%
Accelerator	190	52%
Conventional facilities	101	28%
Gamma-ray beam lines	3	0.8%
Experiments	40	11%
Contingency (8%)	27	7.4%

Distribution of CEPC Project total TDR cost of **36.4B RMB**

CEPC accelerator TDR has been completed and formally released on December 25, 2023 CEPC accelerator TDR link: (arXiv: 2312.14363) CEPC accelerator TDR releasing news:

http://english.ihep.cas.cn/nw/han/y23/202312/t20231229_654555.html

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

CEPC Accelerator TDR International Reviews and CEPC IAC Meeting Endorsement

June 12-16, 2023, in HKUST-IAS, Hong Kong

Chaired by Frank Zimmermann

Phase 1 CEPC TDR Review Report

CEPC TDR Technical Review Committee

15 July 2023

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront e^+e^- collider as a Higgs factory that can extend to energies corresponding to the Z, WW and the top-quark pairs, with the upgrade potential to a high-energy pp collider. The CEPC represents a "grand plan" proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. Since the release of the CEPC Conceptual Design Report in 2018, the CEPC Study Group has devoted significant effort to the design optimisation, the R&D of key technologies and the study of the technical systems of the CEPC.

The CEPC Study Group has produced a draft Technical Design Report (TDR). The International Review Committee, chaired by Dr. Frank Zimmermann (CERN), was asked to conduct a first phase review of this TDR draft. This first phase review shall cover all but the cost and site aspects of the CEPC.

The Phase 1 CEPC TDR Review Committee meeting was held in person at HKUST from 12 to 16 June 2023.

https://indico.ihep.ac.cn/event/19262/timetable/

Oct. 30-31, 2023, in IHEP

Chaired by Brian Foster

The Ninth Meeting of the CEPC-SppC International Advisory Committee

> IAC Committee M. E. Biagini, Y.-H. Chang, A. Cohen, M. Davier, M. Demarteau, B. Foster (Chair), B. Heinemann, K. Jakobs, L. Linssen, L. Maiani, M.L. Mangano, T. Nakada, S. Stapnes, G. N. Taylor, A. Yamamoto, H. Zhao

> > November 14th, 2023

https://indico.ihep.ac.cn/event/20107

Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

Chaired by Loinid Rivkin

CEPC Accelerator TDR Cost Review

The CEPC Accelerator TDR Cost Review committee examined the cost estimate of the TDR of accelerator systems for the first stage of the CEPC project operated as a Higgs factory with synchrotron radiation power up to 30 MW per beam (including all infrastructure that is not easily upgradeable and is already designed to operate up to the ttbar energy and at 50 MW). The cost estimate under review does not include the civil engineering, the detectors at the IPs with their technical services, and the central computing services.

In the opinion of the committee the cost estimate presented is sufficiently complete to form a proper basis for the next iteration that will be done during the EDR stage.

https://indico.ihep.ac.cn/event/19262/timetable/

The IAC also supports another key conclusion in the TDR Review Report, that the accelerator team is well prepared to enter the EDR phase.

-The IAC also support another conclusion in the TDR Review Report that the accelerator team is well prepared to **enter the EDR phase**

27

CEPC Engineering Design Report (EDR) Goal

2012.9	2015.3	2018.11	2023.10	2025	2027	15 ^h five year plan
CEPC proposed	Pre-CDR	CDR	TDR	CEPC Proposal CEPC Detector reference design	EDR	Start of construction

CEPC EDR Phase General Goal: 2024-2027

After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).

CEPC EDR includes accelerator and detector (TDRrd) CEPC detector TDR reference design (rd) will be released by June 30, 2025

CEPC Accelerator EDR Phase goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 20 pages to be reviewed by IARC in 2024

Some Key Issues in EDR (examples)-1

CEPC Accelerator Main EDR Development: SRF

CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

USPC Association EDD Plan J. Gast

HELISTONS HEP Conference, Int. 22, 2014, Hong Kong-

CEPC Magnets' Automatic Production Lines in EDR

To reduce the fabrication cost of the magnets of CEPC, automatic magnet production lines will be demonstrated in EDR and used during construction

CEPC Accelerator Main EDR Development: Klystrons

Massive Production Line of NEG Coating Vacuum Chambers in EDR

- The coating device A: Vacuum chambers are connected in parallel to 6 groups, each group of vacuum chambers length should be lower than 3.5m, outer diameter is about 0.47m;
- The coating device B: Antechamber are connected in parallel to 4 groups, each group of vacuum chambers length should be lower than 1.5m, due to its discharge difficulty.
- Two setups of NEG coating have been built for vacuum pipes of HEPS at IHEP Lab. And a lot of test vacuum pipes have been coated, which shows that NEG film has good adhesion and thickness distribution.
- In EDR phase a dedicated CEPC NEG coated vacuum chamber production line is planned

Some Key Issues in EDR (examples)-2

More detailed works on MDI need to be done in EDR together with detector group: Background, Be pipe, RVC, integration, alignment, mechanics,

Leak detection before vacuum impregnation

Dummy coil winding

coil after vacuum epoxy impregnation

Detector dummy coil development

CURE Assessment FEME Ph

the later 140

CEPC Alignment and Installation Plan in EDR

A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

imp

we he

CEPC Accelerator IARC Meetings in TDR and EDR

International Accelerator Review Committee (IARC) under IAC

he	2019	CEPC	International	Accelerator	Review	Committee

IARC chair: Katsunobu Oide from 2019-2020 **Review Report** IARC chair: Marica Biagini from 2020-now December £ 2010 The 2021 CEPC International Accelerator Review Committee **Review Report** The review meet Circular Electron Committee (IAR) May 19, 2021 (MOI) sessions of 2021 Second CEPC IARC Meeting The IARC was pla TDR. The quality even if not alread IARC Committee The CEPC Inter October 20th. 2021 due to the Covid IARC meeting. 2022 First CEPC IARC Meeting The Circular Electron Positron Co Collider (SppC) Study Group, curren The Circular I ergy Physics of the Chinese Academ IARC Committee currently hosted design of the CEPC accelerator in 20 Academy of Sc ternational Advisory Committee (IAC June 17th, 2022 accelerator in 2(Report (TDR) phase for the CEPC as Committee (IAC) get year of 2022. Meanwhile an Inte The Circular Electron Positron Collider (CEPC) and Super Proton-Proton (IARC) has been established to advis CEPC accelerate All IARC reports (2019-2022) on IAC2022 Meeting Indico: https://indico.ihep.ac.cn/event/17996/page/1415-materials on Nov. 18-21, 2 region, and the compatibility with an upgrade to the t-thar energy region, as well as with a future SppC. As required by IAC, extended IARC will review the CEPC accelerator progresses on the EDR in September 16-18, 2024 lider.

> 2. based on CEPC TDR design, the CEPC dedicated key technology R&D status and the technologies accumulated from the other IHEP responsible large-scale accelerator facilities, such as HEPS, could the CEPC accelerator group start the TDR editorial process and EDR preparation?

> 3. with the new progresses between CEPC and FCCcc possible synergy and the continuing collaboration with SuperKEKB, are there more suggestions on the next steps of international collaborations?

Nov. 2019: https://indico.ihep.ac.cn/event/99 May, 2021: https://indico.ihep.ac.cn/event/14295 October, 2021: https://indico.ihep.ac.cn/event/15177

June, 2022: https://indico.ihep.ac.cn/event/16801/

Jan. 2024: preparation zoom meeting Sept. 2024: first extended IARC meeting in EDR phase

After the completion of CEPC CDR in Nov. 2018, since the first CEPC IARC meeting in 2019, there has been totally 4 IARC meetings till 2022, with each meeting a carefully written IARC report, which are very helpful for CEPC accelerator in TDR phase and beyond.

CEPC Detector R&D Status

Lots of R&D benefitted from past experience

- Silicon strip detector: Experience from ATLAS upgrade
- Drift chamber: Lots of Experience from BESIII
- Super-conducting magnet: Experience from BESIII
- New R&D on key technology
 - Vertex detector \triangleright
 - TPC drift chamber
 - **PFA** calorimeter

Solenoid magnet

Thickness

Prototype Manufactured World-class level CEPC prototype Requirement Sub-detector Specification $3-5\,\mu m$ [14-16] Pixel detector Spatial resolution $\sim 3 \,\mu m$ $3-5 \,\mu m$ [12, 13] dE/dx (dN/dx) resolution $\sim 2\%$ ~ 4% [17.18] ~ 4% [19-21] TPC/drift chamber Prototype built $< 15\% / \sqrt{E({\rm GeV})}$ Energy resolution 12.5% [22] Scintillator-W to be measured $\sim 2 \times 2 \text{ cm}^2$ Granularity $0.5 \times 0.5 \text{ cm}^2$ **ECal** Prototyping [25] $2\%/\sqrt{E(\text{GeV})}$ [23, 24] $\sim 3\%/\sqrt{E(\text{GeV})}$ $\sim 3\%/\sqrt{E(\text{GeV})}$ 4D crystal ECal EM energy resolution 3D Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$ N/A $\sim 2 \times 2 \times 2 \text{ cm}^3$ Support PFA, Scintillator-Steel Prototyping Single hadron σ_{E}^{had} $< 60\% / \sqrt{E({\rm GeV})}$ $57.6/\sqrt{E(\text{GeV})\%}$ [26] HCal Support PFA Prototyping Scintillating $\sim 40\% / \sqrt{E(\text{GeV})}$ Single hadron σ_{E}^{had} $\sim 40\%/\sqrt{E(\text{GeV})}$ N/A glass HCal 2 T - 3 T1 T - 4 T [27-29] Magnet field strength Prototyping Low-mass

< 150 mm

> 270 mm

CEPC Detector TDRrd

(rd=reference design)

will be released in June, 2025

Vertex detector R & D (3- 5 µm reso.)

TPC prototype (low power electronics)

4,5 prototypes, 15⁺ years of R&D, all [to be] tested

SI-W ECAL (ALICE FoCAL)

[Scint-W ECAL]

AHCAL

32

0.5×0.5 cm² ×15 (-+30) Si layers

0.003×0.003 cm² × 24 MIMOSA lavers + W

0.5×4.5 cm² ×30 Scint+SiPM lav. + SS

3×3 cm² × 38 Scint+SiPM lay + SS

1×1 cm2 × 48 layers GRPC + SS

CEPC Detector Technology R&D Breakdown

Det	Technology	Technology Det Technology		Large number of detector R&D projects			
×	JadePix		Crystal ECAL	on-going:			
erte	TaichuPix		Stereo Crystal ECAL	Not all at the same layed of maturity, some have weach			
N N	CPV(SOI)	. L	Scint+W ECAL	the large-scale prototype level.			
Pixe	Stitching	lete	Si+W ECAL				
	Arcadia	nim	Scint+Fe AHCAL	Need to converge soon to a CEPC Detector TDR			
	CEPCPix	Calo	ScintGlass AHCAL	• Start preparation in January of 2024			
DID	Silicon Strip	Ŭ	RPC SDHCAL	 A draft version by December, 2024 			
°Q ∠	TPC		MPGD SDHCAL	• Official release by June 30, 2025.			
cke	Drift chamber		DR Calorimeter				
Tra	PID drift chamber	c	Scintillation Bar	International detector collaborative efforts:			
	LGAD ToF	onl	RPC	DRD collaborations			
Ē	SiTrk+Crystal ECAL	2	^μ -Rwell	LIL LUC detector D ⁰ D ² e help propering teems for			
2	SiTrk+SiW ECAL		HTS / LTS Magnet	the CEPC detectors.			
	CEPC SW		MDI & Integration				
	TDAQ						

S

The 4th Conceptual Detector towards a Reference Design ₃₄

HTS Solenoid Magnet (3T / 2T) Between HCAL & ECAL, or inside HCAL

Advantage: HCAL absorbers act as part of the magnet return yoke. Challenges: Thin enough not to affect the jet resolution; Stability.

Transverse Crystal bar ECAL

Advantage: Better π^0/γ reconstruction

Challenges: Minimum number of readout channels; Compatible with PFA calorimeter; Maintain good jet resolution.

A Drift chamber optimized for PID

Advantage: Work at high luminosity Z runs

Challenges: Sufficient PID power; Thin enough not to affect the moment resolution; Need supplementary ToF detector

CEPC Detector: Idea of the "4th Concept"

- Silicon combined with gaseous chamber as the tracker and PID
- ECAL based on crystals with timing for 3D shower profile for PFA andEM energy
- Scintillation glass HCAL for better hadron sampling and energy resolution

R&D: Vertex Detector and Tracker

R&D: Calorimeters with PFA

Crystal ECAL

Energy resolution $\frac{\sim 3\%}{\sqrt{E}} \oplus \sim 1\%$

Features:

- Good energy resolution
- > 3D shower info. with limited readout channel
- Shower separation < 4 cm</p>

Main issues for R&D

➢ Jet reconstruction and PFA algorithm

Scintillation Glass HCAL

Energy resolution ~40%/ $\sqrt{E \pm ~2\%}$

Features:

- Large sampling ratio at low cost
 Main issues for R&D
- high density, high light yield, radiation hardness, production

CEPC Sub-detectors with Beam Tests

《信州大学

東京大学

्र व्या ग्यंटा र्यज्ञ

CEPC calorimeter prototypes: beamtest in 2022

Crystal modules: beamtest at CERN in 2023

Successful CERN beamtest: parasitic runs at PS-T9 (May 16-23, 2023)

DARGE STREET

- Achieved major goals
- Commissioning of the first crystal module
- · Validation of simulation and digitization

Test beam @ DESY

2nd testbeam: April 11-23 2023 DESY test beam in Germany (4-6 GeV electron) • Vertex detector prototype testbeam

1st testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6 GeV electron) • TaichuPix Beam Telescope testbeam

2022 DESY test

2023 DESY test

Excellent collaboration with DESY testbeam team

CEPC calorimeter prototypes: beamtests in 2023

Beamtest campaigns

- First period (16 days): CERN SPS-H2 in Apr. May 2023
- Second period (15 days): CERN PS-T09 in May 2023
- Data sets: significantly improved beam purity than 2022
- Collected decent statistics, enabling detector performance evaluation, validation of Geant4 simulation, particle-flow studies, etc.

Not all information are available. There could be small errors in the table.

DRD Themes	Proposals	Institutes	People
1 Gaseous detectors	7 (DD)	IHEP, USTC, SJTU, JLU, SIAT, THU, WHU	46
2 Liquid detectors	2 (PA)	IHEP	7
3 Solid state detectors	4 (HJ)	SCNU, SDU, SJTU, THU	10
4 PID and photo detectors	3 (HJ)	IHEP, Henan NU, SDU	11
5 Quantum & emerging tech	2 (HJ)	SDU, THU	7
6 Calorimetry	6 (PA)	IHEP, SDU, SCNU, PKU	37
7 Electronics	3 (HJ)	IHEP, SDU, SJTU	5
8 Integration	3 (HJ)	IHEP	8
Total	30	11 institutes	131

- ✤ The total funding, already allocated or wished for, is ~50 MCNY
- Many of the CEPC ongoing R&Ds are in this list. Some may be missing. We will go through all directly related projects and make sure that all necessary ones have proper collaboration.

CEPC Evolution Milestones

CEPC Planning and Schedule

TDR (2023), EDR(2027), start of construction (2027-8)

CEPC Site Implementation and Construction Plans

CEPC site implementation plan in EDR

CEPC construction plan

9

CEPC Project Development towards construction

- TDR has been completed (review + revision) to be formally released on Dec. 25, 2023.
- CAS is planning for the 15th 5-years plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- High energy physics and nuclear physics, is one of the 8 groups (fields).
- CEPC is ranked No. 1, with the smallest uncertainties, by every evaluation committee both domestic and international one among all the collected proposals.
- A final report has been submitted to CAS for consideration.
- The above mentioned actual process is within CAS and the following national selection process will be decisive.

Participating and Potential Collaborating Companies in China and Worldwide

	System	CEPC Industrial Promotion Consortium Detention intermediate all characters
1	Magnet	(CIPC, established in Nov. 2017) Suppliers and partners worldwide
2	Power supplier	
3	Vacuum	LEIKE
4	Mechanics	Enderstand の の の の の の の の の の の の の の の の の の の
5	RF Power	
6	SRF/ RF	
7	Cryogenics	
8	Instrumentation	
9	Control	Main Dire Explaneing Gravity (L, LL) Main Residents workshold Main Residents workshold
10	Survey and alignment	
11	Radiation protection	
12	e-e+Sources	

CEPC-SppCGeneral Status-J. Gao

May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom)

CEPC International Collaboration-1

CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) <u>arXiv</u> 2312.14363

- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015

CEPC International Collaboration-2

Workshop on the Circuar Electron Positron Collider-EU edition May 24-26, 2018, Università degli Studi Roma Tre, Rome, Italy https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=14816

3rd CEPC IAC, Nov 8-9, 2017, IHEP, Beijing

IAS Higgh Energy Physics Workshop (Since 2015) http://iasprogram.ust.hk/hep/2018

CEPC-SppCGeneral Status-J. Gao

CEPC Workshop-EU , 2019 Sep 2019, Oxford,UK https://agenda.infn.it/conferenceDisplay.py?ovw=True&confld=14816

CEPC Workshop, University of Chicago, September 16-18, 2019 <u>http://cepc.uchicago.edu/</u>

CEPC Workshop, he Catholic University of America,

22-23 April 2020, Washingtong, USA (online)

More than 20 MoUs have been signed with international institutions and universities

May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom) <u>https://indico.cern.ch/event/863751/</u>

CEPC International Collaboration-3

HKIAS23 HEP Conference Feb. 14-16, 2023

https://indico.cern.ch/event/1215937/

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively. https://indico.cern.ch/event/1335278/timetable/?view=standard

The 2023 International Workshop on Circular Electron Positron Collider, EUEdition,University of Edinburgh, July 3-6, 2023 <u>https://indico.ph.ed.ac.uk/event/259/overview</u>

The 2024 international workshop on the high energy Circular

Electron Positron Collider (CEPC)

will be held from Oct. 23-27, 2024, Hangzhou, China The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

The 2024 international workshop of CEPC, EU-Edition were held in Marseille, France, April 8-11, 2024. <u>https://indico.in2p3.fr/event/20053/overview</u>

Professor Peter Higgs passed away on **April 8, 2024**. We miss him.

CEPC-SppCGeneral Status-J. Gao

May 14, 2024, Petersburg Nuclear Physics Institute, Russia (zoom)

CEPC in Synergy with other Accelerator Projects in China ₄₈

Project name	Machine type	Location	Cost (B RMB)	Completion time
СЕРС	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII- U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

- CEPC addressed most pressing & critical science problems in particle physics
- Accelerator design and technology R&D are reaching maturity, TDR completed in 2023, ready for construction in 3-5 years
- Reference detector TDR under preparation, to be completed by 2025 for the proposal of the 15th 5-year plan
- A strong and experienced team, backed by IHEP and international teams
- Schedule will follow China's 15th 5-year plan, Call for collaboration and proposals once CEPC is (preliminary) approved
- Continue to work with government and funding agencies to get support
- International collaborations are mostly welcome.

Thanks go to CEPC-SppC team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC and TDR review (+cost) committee's critical advices, suggestions and encouragement

Thanks for your attention